西安户型模型,执着的创造精神,全新的设计理念
2025-08-30 12:50:01 1031次浏览
价 格:面议
油泥是一种人造材料。凝固后极软,较软,坚硬。油泥可塑性强,黏性、韧性比黄泥(黏土模型) 强。它在塑造时使用方便,成型过程中可随意雕塑、修整,成型后不易干裂,可反复使用。油泥价格较高,易于携带,制作一些小巧、异型和曲面较多的造型更为合适。一般像车类、船类造型用油泥极为方便。所以选用褐油泥作为油泥的外层是很明智的选择。油泥的材料主要成分有滑石粉62%、凡士林30%、工业用蜡8%。
黏土材料来源广泛取材方便价格低廉经过洗泥工序和炼熟过程,其质地更加细腻。黏土具有一定的粘合性,可塑性极强,在塑造过程中可以反复修改,任意调整,修刮填补比较方便。还可以重复使用,是一种比较理想的造型材料。但是如果黏土中的水分失去过多则容易使黏土模型出现收缩,龟裂甚至产生断裂现象, 不利于长期保存 。另外,在黏土模型表面上进行效果处理的方法也不是很多,黏土制作模型时一定要选用含沙量少,在使用前要反复加工,把泥和熟,使用起来才方便。一般作为雕塑、翻模用泥使用。
概念模型是当设计想法还比较朦胧时形成的三维表现形式,同样,在建筑与景观设计中, 概念性的模型伴随着设计思路而形成。它直接在三维空间中进行设计,尽管比例小,但设计概念也是经过推敲而形成并逐步完善的。如果只局限于图纸上则不会有如此多的选择性,通常概念模型都是快速的制成,用于激发创造灵感,建筑材料也被象征性地表现出来。同时环境景观构思时各个组成部分之间的关系,如是否与周围环境和谐,通过概念模型可以将三维空间中构思的萌芽加以概括,采用简单的方法和易加工的材料加工来实现,目的是为了直观地比较形状、 尺度、方向、色彩和肌理等,还有快速修改的特点。 按表现形态将建筑与景观模型分为以下三种类型: 地形学模型:地形学模型包括地形模型、绿化景观模型和花园模型。 建筑主体模型:建筑主体模型包括都市建筑模型、房屋模型、结构模型、内部空间模型、 细节模型、小品模型。 电脑制作模型:电脑制作模型包括CNC建筑模型、实体模型与数字模型的相互转换。
模型能够真实展现人类的设计与构思,更能直观地了解历史与人文。它是人类智慧和工艺的结合品,制作精美的模型作品不仅是一件珍贵的艺术品,同时又是一件观赏价值很高的陈列品,更是一个时期思维与文化的载体。在现实中,虚拟平面图形与立体实物之间的差别是很大的。一个设计在平面图上的产品,从图纸的表面视觉看各部分比例都较为适合形态,但做成立体实物后,就有可能会显示出与设计创意初衷的比例不符。形成这些差别的原因是人们从平面到立体之间错觉造成的。其次,计算机虚拟的效果图或二维平面图在视图中对产品色彩和质感方面表达也具有相当的局限性。通过模型的呈现能够弥补上述不足,因此模型制作是产品设计过程中一个十分重要的阶段。 使用易于加工的材料依照设计图或设计构想,按缩小的比例制成的产品称之为模型。模型适用行业广,主要在科研实验,军事国防,医疗教学,环境治理,工程建设,农业规划,地产设计,城市规划等领域。其种类有:机械设备模型、园林建筑模型、规划沙盘模型、地形地貌沙盘模型及军事沙盘模型等……具有立体感强、形象直观、制作简便、经济实用等特点。
-
油泥是一种人造材料。凝固后极软,较软,坚硬。油泥可塑性强,黏性、韧性比黄泥(黏土模型) 强。它在塑造时使用方便,成型过程中可随意雕塑、修整,成型后不易干裂,可反复使用。油泥价格较高,易于携带,制作一些小巧、异型和曲面较多的造型更为合适。一般
-
数字模型(虚拟模型)利用计算机辅助设计(CAD)软件(如 SolidWorks、AutoCAD、CATIA 等)创建的三维虚拟模型,支持参数化设计和动态仿真。应用场景:研发设计中的结构分析、运动仿真、碰撞检测;虚拟调试、数字孪生系统等。特点
-
按应用阶段分类设计阶段模型:用于验证设备的结构合理性和功能可行性,常为数字模型。生产阶段模型:指导加工制造的工艺模型(如模具模型、焊接夹具模型)。运维阶段模型:用于设备维护、故障诊断的仿真模型(如有限元分析模型、故障树模型)。材料选择材料类
-
物理模型(实体模型)通过材料(如金属、塑料、木材等)手工或机械加工制作的实体模型,直观展示设备的外观结构、尺寸比例。应用场景:产品原型展示、工业设计验证、展览展会等。特点:可触摸、立体感强,但制作成本较高,修改难度大。工业原型模型场景:新产
-
未来发展趋势智能化与集成化模型将更深度融合 AI 算法,实现自动故障诊断、工艺优化(如通过机器学习自动调整加工参数)。虚实融合技术结合 AR/VR(增强现实 / 虚拟现实)技术,用户可通过穿戴设备 “沉浸式” 交互工业设备模型,例如在虚拟环
-
数字模型(虚拟模型)利用计算机辅助设计(CAD)软件(如 SolidWorks、AutoCAD、CATIA 等)创建的三维虚拟模型,支持参数化设计和动态仿真。应用场景:研发设计中的结构分析、运动仿真、碰撞检测;虚拟调试、数字孪生系统等。特点
-
数字模型(虚拟模型)利用计算机辅助设计(CAD)软件(如 SolidWorks、AutoCAD、CATIA 等)创建的三维虚拟模型,支持参数化设计和动态仿真。应用场景:研发设计中的结构分析、运动仿真、碰撞检测;虚拟调试、数字孪生系统等。特点
-
物理模型(实体模型)通过材料(如金属、塑料、木材等)手工或机械加工制作的实体模型,直观展示设备的外观结构、尺寸比例。应用场景:产品原型展示、工业设计验证、展览展会等。特点:可触摸、立体感强,但制作成本较高,修改难度大。数字模型(虚拟模型)利
-
仿真技术运动仿真:验证机械部件的运动干涉和轨迹合理性(如机器人路径规划)。热力学仿真:分析设备散热、能量损耗等问题(如电机温升模拟)。控制仿真:通过 PLC(可编程逻辑控制器)虚拟调试,验证自动化程序的逻辑正确性。核心成本影响因素1. 模型
-
概念模型以简化或抽象的方式表达设备功能或原理的模型,不注重细节结构,常用于理论分析或流程演示(如流程图、方框图)。应用场景:系统架构设计、工艺规划、教学中的原理讲解。按应用阶段分类设计阶段模型:用于验证设备的结构合理性和功能可行性,常为数字
-
物理模型(实体模型)通过材料(如金属、塑料、木材等)手工或机械加工制作的实体模型,直观展示设备的外观结构、尺寸比例。应用场景:产品原型展示、工业设计验证、展览展会等。特点:可触摸、立体感强,但制作成本较高,修改难度大。典型工业设备模型案例数
-
概念模型以简化或抽象的方式表达设备功能或原理的模型,不注重细节结构,常用于理论分析或流程演示(如流程图、方框图)。应用场景:系统架构设计、工艺规划、教学中的原理讲解。工业设备模型的核心作用辅助设计研发通过数字模型进行结构优化(如轻量化设计)
-
按技术领域分类机械加工设备模型如机床(车床、铣床、加工中心)、冲压设备、铸造设备等,重点体现机械传动结构、运动轨迹和加工工艺。动力设备模型如发动机、汽轮机、压缩机等,注重内部热力循环、流体力学原理的展示。自动化设备模型如工业机器人、流水线生
-
数字模型(虚拟模型)利用计算机辅助设计(CAD)软件(如 SolidWorks、AutoCAD、CATIA 等)创建的三维虚拟模型,支持参数化设计和动态仿真。应用场景:研发设计中的结构分析、运动仿真、碰撞检测;虚拟调试、数字孪生系统等。特点
-
按技术领域分类机械加工设备模型如机床(车床、铣床、加工中心)、冲压设备、铸造设备等,重点体现机械传动结构、运动轨迹和加工工艺。动力设备模型如发动机、汽轮机、压缩机等,注重内部热力循环、流体力学原理的展示。自动化设备模型如工业机器人、流水线生
-
数字孪生技术将物理设备与数字模型实时映射,通过传感器采集数据驱动模型动态更新,实现 “虚拟监控实体、实体反馈虚拟” 的闭环。应用场景:智能工厂中,数字孪生模型可实时显示生产线设备的运行参数,辅助远程运维。典型工业设备模型案例数控机床模型物理
-
物理模型(实体模型)通过材料(如金属、塑料、木材等)手工或机械加工制作的实体模型,直观展示设备的外观结构、尺寸比例。应用场景:产品原型展示、工业设计验证、展览展会等。特点:可触摸、立体感强,但制作成本较高,修改难度大。材料选择材料类型常见材
-
数字孪生技术将物理设备与数字模型实时映射,通过传感器采集数据驱动模型动态更新,实现 “虚拟监控实体、实体反馈虚拟” 的闭环。应用场景:智能工厂中,数字孪生模型可实时显示生产线设备的运行参数,辅助远程运维。未来发展趋势智能化与集成化模型将更深
-
数字模型(虚拟模型)利用计算机辅助设计(CAD)软件(如 SolidWorks、AutoCAD、CATIA 等)创建的三维虚拟模型,支持参数化设计和动态仿真。应用场景:研发设计中的结构分析、运动仿真、碰撞检测;虚拟调试、数字孪生系统等。特点
-
物理模型(实体模型)通过材料(如金属、塑料、木材等)手工或机械加工制作的实体模型,直观展示设备的外观结构、尺寸比例。应用场景:产品原型展示、工业设计验证、展览展会等。特点:可触摸、立体感强,但制作成本较高,修改难度大。精度与表面处理低精度模