2025-06-18 10:00:01 18次浏览
价 格:面议
按应用阶段分类
设计阶段模型:用于验证设备的结构合理性和功能可行性,常为数字模型。
生产阶段模型:指导加工制造的工艺模型(如模具模型、焊接夹具模型)。
运维阶段模型:用于设备维护、故障诊断的仿真模型(如有限元分析模型、故障树模型)。
仿真技术
运动仿真:验证机械部件的运动干涉和轨迹合理性(如机器人路径规划)。
热力学仿真:分析设备散热、能量损耗等问题(如电机温升模拟)。
控制仿真:通过 PLC(可编程逻辑控制器)虚拟调试,验证自动化程序的逻辑正确性。
典型工业设备模型案例
数控机床模型
物理模型:展示主轴、刀库、导轨等关键部件的装配关系,用于职业院校教学。
数字模型:通过 CAM 软件生成加工路径,模拟零件切削过程,优化刀具轨迹。
工业机器人模型
数字模型:在 RobotStudio 等软件中仿真机器人抓取、焊接等动作,验证轨迹规划的合理性。
数字孪生模型:连接真实机器人的编码器数据,实时显示关节角度和负载状态。
化工设备模型
概念模型:用流程图表示反应釜、换热器、管道之间的物料流动和化学反应过程。
物理模型:按比例缩小的精馏塔模型,展示内部塔板结构和传质原理。
材料选择
材料类型 常见材质 成本特点 适用场景
非金属材料 塑料(ABS、亚克力)、木材、树脂 成本低、易加工,但强度和仿真度有限 教学模型、概念验证模型
金属材料 铝合金、钢、铜 成本高、加工难度大,但质感和耐用性强 高精度展示模型、工业原型
复合材料 碳纤维、玻璃纤维 轻量化、高强度,但价格昂贵 高端设备模型、航空航天模型